الاسم:

الشعبة:

المدة: ثلاث ساعات

مذاكرة الفصل الأول الدوام الصباحي الرياضيـــات

الثالث الثانوي العلمي (٢٠١٩ - ٢٠٢٠)

(١٠ درجة لكل سؤال)

أولاً: أجب عن كل الأسئلة الأربعة الآتية:

السؤال الأول: أوجد عند (∞) نهاية التابع (f) الذي يحقق المتراجحة :

$$(\mathbb{R})$$
 من (x) من (x) من (x) أياً كان (x) من (x)

(1) عند
$$f(x) = \frac{x-1}{x^3+3x-4}$$
 عند السؤال الثاني: ① . أوجد نهاية التابع

.(0) عند
$$f(x) = \frac{2x^3 + 5 - 5\cos 2x}{x^2}$$
 عند (0).

السؤال الثالث: لدينا
$$Z_B = \overline{Z_A}$$
 حيث $Z_B = \overline{Z_A}$ ، و المطلوب:

 $arg\left(Z_{A}
ight)$ استنج. $oldsymbol{2}$

السؤال الرابع: في المعلم المتجانس $\left(0\ ,\ \vec{i}\ ,\ \vec{j}\ ,\ \vec{k}\right)$ لدينا النقاط:

$$A(1,0,1), B(2,4,2), C(3,0,5), D(4,-4,8)$$

أثبت أن الأشعة \overrightarrow{A} و \overrightarrow{A} و \overrightarrow{A} مرتبطة خطياً

(۲۰ درجة لكل تمرين)

ثانياً: حل التمارين الأربعة الآتية:

التمرين الأول: لدينا $z_1=2\left(\cos{\frac{\pi}{3}}+i\,\sin{\frac{\pi}{3}}\right)$ ، و المطلوب

- اكتب z_2 و $z_1 \cdot z_2$ بالشكل المثلثي و z_1 بالشكل الجبري . $\mathbf{0}$
 - الجبري. الشكل الجبري.
 - $\sin \frac{\pi}{12}$ و $\cos \frac{\pi}{12}$.

 $\ln\left(\sqrt{2x-3}\right) = \ln\left(6-x\right) - \frac{1}{2}\ln x$: حل المعادلة التالية: $\mathbf{0}$. حل المعادلة التالية:

. $\ln \frac{1}{x} > 2$ حل المتراجحة 2

التمرين الثالث : f تابع معرّف على \Box وفق : $\sqrt{4x^2+3}$ و المطلوب:

أوجد معادلة المقارب المائل للخط البياني للتابع في جوار (∞ +)

$$(+\infty)$$
 عند $f(x) = \frac{E(x)}{x-1}$ عند ($(+\infty)$). أوجد نهاية التابع

التمرين الرابع: عيّن مجموعة الأعداد العقدية Z التي يكون من أجلها المقدار $H=rac{z+3i}{z-3i}$ حقيقياً.

ثالثاً: حل المسألتين الآتيتين:

المسألة الأولى:

 $M\left(4,-1,2\right), B\left(2,3,6\right), A\left(2,3,0\right)$ لدينا النقاط: $\left(0\,\,,\,\vec{i}\,\,,\,\vec{j}\,\,,\,\vec{k}\right)$ لدينا النقاط: و المطلوب:

- $oldsymbol{(A\ B)}$ اثبت أن $oldsymbol{M}$ لا تقع على المستقيم . $oldsymbol{0}$
- (2,3,z) النمط (AB) إحداثيات من النمط (AB) من المستقيم عن النمط . (2,3,z)
 - Z بدلالة M K^2 بدلالة .3
 - [BM] اكتب معادلة الكرة [BM] التي قطرها [BM]

المسألة الثانية:

 $f\left(x\right) = x + \frac{\ln x}{x}$ و ليكن $G\left(x\right) = x + \frac{\ln x}{x}$ المعرف على المجال $G\left(x\right) = x + \frac{\ln x}{x}$ و ليكن $G\left(x\right) = x + \frac{\ln x}{x}$ معرف على $G\left(x\right) = x^2 + 1 - \ln x$ و ليكن

- . $x \in I$ ونظم جدولاً بها، و استنتج أن g(x) > 0 أياً كان . $\mathbf{0}$
 - . I ملی أن $f'(x) = \frac{g(x)}{x^2}$ ، و استنتج جهة اطراد.
 - ادرس تغیرات التابع f ونظم جدولاً بها. $\mathbf{3}$
- Δ مع C مع النسبي للخط y=x مقارب مائل عند x ، ثم ادرس الوضع النسبي للخط x مع x . x

www.alandalos-school.com

Tel. 2218807

info@alandalos-school.com

